
Linear
Sorting

CS 251 - Data Structures
and Algorithms

Note:
Slides complement the

discussion in class

2

Table of Contents
Why comparing when we can
just count?

Counting Sort

Bucket Sort
Yes, use buckets!

Radix Sort
Sort by digits

01

02

03

Counting Sort
01

Why comparing when we can just
count?

4

Harold H. Seward. "Information
Sorting in the Application of

Electronic Digital Computers to
Business Operations." Master's

thesis, MIT, 1954.

5https://www.cs.cornell.edu/courses/JavaAndDS/files/R-232_Info_Sorting_in_the_Applic_Electronic_Computers_Busin_Ops_May54.pdf

https://www.cs.cornell.edu/courses/JavaAndDS/files/R-232_Info_Sorting_in_the_Applic_Electronic_Computers_Busin_Ops_May54.pdf

Just count?

“Counting sort assumes that each of the 𝑛 input elements is an integer in
the range 0 to 𝑘, for some [positive] integer 𝑘. When 𝑘 ∈ 𝑂(𝑛), then [the
algorithm] runs in 𝛩(𝑛).”

So, how do we sort an array without comparing its elements?

Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L.; Stein, Clifford. Introduction to Algorithms (The MIT Press) (p. 5). The MIT Press. Kindle Edition. 6

algorithm countingsort(A:array, k:ℤ+)

let C be an array of length k+1
fill C with 0s

let n be the size A

for i from 0 to n-1 do
C[A[i]] ← C[A[i]] + 1

end for

for i from 1 to k do
C[i] ← C[i] + C[i-1]

end for

let B be an array of size n

for i from n-1 to 0 by -1 do
B[C[A[i]] - 1] ← A[i]
C[A[i]] ← C[A[i]] - 1

end for

return B

end algorithm

Step 1: Array C keeps the number of occurrences
for each element in A.

Step 2: Count the occurrences of each item in A.
Use A[i] as the indices of C.

Step 3: Accumulate the count values in C from
left to right.

Step 4: Use values in C to determine the final
index for each element in A.

7

Step 5 (optional): Copy the elements from B to
A if they must be in the original array.

k = 5

Step 1: Array C keeps the number of occurrence for each element
in A.

Step 2: Count the occurrences of each item in A. Use A[i] as the
indices of C.

Step 3: Accumulate the count values in C from left to right.

0 1 2 3 4 5

0 0 0 0 0 0C

0 1 2 3 4 5

2 0 2 3 0 1C

0 1 2 3 4 5

2 2 4 7 7 8C

Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L.; Stein, Clifford. Introduction to Algorithms (The MIT Press) (p. 5). The MIT Press. Kindle Edition. 8

0 1 2 3 4 5 6 7

(2, A) (5, C) (3, H) (0, B) (2, X) (3, B) (0, X) (3, D)A

Step 4: Use values in C to determine the final index for each element in A.

9

0 1 2 3 4 5 6 7

(2, A) (5, C) (3, H) (0, B) (2, X) (3, B) (0, X) (3, D)A

0 1 2 3 4 5

2 2 4 7 7 8C

0 1 2 3 4 5 6 7

- - - - - - (3, D) -B

7 – 1 = 6

Step 4: Use values in C to determine the final index for each element in A.

10

0 1 2 3 4 5 6 7

(2, A) (5, C) (3, H) (0, B) (2, X) (3, B) (0, X) (3, D)A

0 1 2 3 4 5

2 2 4 6 7 8C

0 1 2 3 4 5 6 7

- (0, X) - - - - (3, D) -B

2 – 1 = 1

Step 4: Use values in C to determine the final index for each element in A.

11

0 1 2 3 4 5 6 7

(2, A) (5, C) (3, H) (0, B) (2, X) (3, B) (0, X) (3, D)A

0 1 2 3 4 5

1 2 4 6 7 8C

0 1 2 3 4 5 6 7

- (0, X) - - - (3, B) (3, D) -B

6 – 1 = 5

Step 4: Use values in C to determine the final index for each element in A.

12

0 1 2 3 4 5 6 7

(2, A) (5, C) (3, H) (0, B) (2, X) (3, B) (0, X) (3, D)A

0 1 2 3 4 5

1 2 4 5 7 8C

0 1 2 3 4 5 6 7

- (0, X) - (2, X) - (3, B) (3, D) -B

4 – 1 = 3

Step 4: Use values in C to determine the final index for each element in A.

13

0 1 2 3 4 5 6 7

(2, A) (5, C) (3, H) (0, B) (2, X) (3, B) (0, X) (3, D)A

0 1 2 3 4 5

1 2 3 5 7 8C

0 1 2 3 4 5 6 7

(0, B) (0, X) - (2, X) - (3, B) (3, D) -B

1 – 1 = 0

Step 4: Use values in C to determine the final index for each element in A.

14

0 1 2 3 4 5 6 7

(2, A) (5, C) (3, H) (0, B) (2, X) (3, B) (0, X) (3, D)A

0 1 2 3 4 5

0 2 3 5 7 8C

0 1 2 3 4 5 6 7

(0, B) (0, X) - (2, X) (3, H) (3, B) (3, D) -B

5 – 1 = 4

Step 4: Use values in C to determine the final index for each element in A.

15

0 1 2 3 4 5 6 7

(2, A) (5, C) (3, H) (0, B) (2, X) (3, B) (0, X) (3, D)A

0 1 2 3 4 5

0 2 3 4 7 8C

0 1 2 3 4 5 6 7

(0, B) (0, X) - (2, X) (3, H) (3, B) (3, D) (5, C)B

8 – 1 = 7

Step 4: Use values in C to determine the final index for each element in A.

16

0 1 2 3 4 5 6 7

(2, A) (5, C) (3, H) (0, B) (2, X) (3, B) (0, X) (3, D)A

0 1 2 3 4 5

0 2 3 4 7 7C

0 1 2 3 4 5 6 7

(0, B) (0, X) (2, A) (2, X) (3, H) (3, B) (3, D) (5, C)B

3 – 1 = 2

algorithm countingsort(A:array, k:ℤ+)

let C be an array of length k+1
fill C with 0s

let n be the size A

for i from 0 to n-1 do
C[A[i]] ← C[A[i]] + 1

end for

for i from 1 to k do
C[i] ← C[i] + C[i-1]

end for

let B be an array of size n

for i from n-1 to 0 by -1 do
B[C[A[i]] - 1] ← A[i]
C[A[i]] ← C[A[i]] - 1

end for

return B

end algorithm

Step 1: 𝑂(𝑘)

Step 2: 𝑂(𝑛)

Step 3: 𝑂(𝑘)

Step 4: 𝑂(𝑛)

Runtime complexity: 𝑂(𝑛 + 𝑘)
Warning: Check your 𝒌

Space complexity: Θ 𝑛 + 𝑘

Stable? Yes, since we populate
array 𝐵 backwards.

17

Proof of Correctness
(Insights)

Initial Counting Step: The algorithm starts by counting the occurrence of each item in the input array 𝐴 and stores these
counts in an auxiliary array 𝐶. For each item 𝑖, 𝐶 𝑖 accurately represents the total number of elements with item 𝑖 in 𝐴. This
step ensures that we have the exact count of each item.

Cumulative Count Adjustment: The next step transforms 𝐶 into a cumulative count array. After this adjustment, for any item
𝑖, 𝐶 𝑖 represents the total number of elements with items less than or equal to 𝑖. This transformation is crucial because 𝐶 𝑖
now indicates the position just after the last occurrence of 𝑖 in the sorted array 𝐵. It effectively tells us where a new
occurrence of 𝑖 should be placed in 𝐵, guaranteeing each element's correct position based on its item.

Placement and Stability: The placement step iterates over the input array 𝐴 from last to first. For each element 𝐴 𝑖 , it
places 𝐴 𝑖 into the output array 𝐵 at the position indicated by 𝐶 𝐴 𝑖 − 1, and then decrements 𝐶 𝐴 𝑖 . This
decrementing step is critical: it updates 𝐶 𝐴 𝑖 to point to the next free position for a potential previous occurrence of the
same item, ensuring stability. By iterating from last to first in 𝐴, we guarantee that elements with the same item are placed in
𝐵 in the same order they appear in 𝐴, thus maintaining stability.

Proof of Correctness

Correct Final Position: After the cumulative count adjustment, 𝐶 𝑖 indicates the correct final position for
the next element with item 𝑖 (considering 0-based indexing). Placing each element 𝐴 𝑗 into 𝐵ൣ
൧

𝐶 𝐴 𝑗 −

1 and decrementing 𝐶 𝐴 𝑗 ensures that elements are placed in their correct position, preserving the
sorted order.

Stability: By iterating backwards through the input array 𝐴 and using a decrementing index from 𝐶 for
placement in 𝐵, we ensure that when two items have the same value, the one encountered later in the
backward traversal (which was originally placed later in 𝐴) is placed later in 𝐵. This maintains the original
relative order of equal items, proving the algorithm's stability.

Completeness: Since every item in 𝐴 is placed into 𝐵 exactly once, and 𝐶 is correctly decremented to
manage duplicate items, all items from 𝐴 are accounted for in 𝐵, ensuring the output array is a complete
and accurate sorted version of 𝐴.

Bucket Sort
02
Yes, use buckets!

20

Think About This

Longest word in an English dictionary*:
pneumonoultramicroscopicsilicovolcanoconiosis (45 characters).

Smallest word? There are some words made up of a single character.

Consider a list of 𝑛 English words stored as Strings.

Think about an algorithm to sort the words by length. Assume the length of a String
is 𝑂 1 .

The algorithm should take 𝑂 𝑛 . Is that possible?

21* There exist longer words, but those do not appear in major dictionaries.

Solution

Analysis:

Traversing the input words: 𝑂 𝑛

Inserting 𝑤 in list at 𝐴 𝑙 − 1 : 𝑂 1

Joining two lists: 𝑂 1
All 45 joins in 𝑂 1 (it’s always 45)

Runtime complexity: 𝑂 𝑛

Algorithm:

Define an array 𝐴 of 45 linked lists.

For each word 𝑤 in the input list:
get its length 𝑙 and insert 𝑤 in list at
𝐴 𝑙 − 1 .

Join the 45 lists. This results in all
words sorted by length.

22

Bucket Sort

Bucket Sort assumes an input array 𝐴 of 𝑛 floating-point numbers ranging from 0
to 1 (exclusive). The original algorithm distributes the items of the array into 𝑛
buckets (i.e., lists).

Each bucket is then sorted individually, either using a different sorting algorithm or
by recursively applying the bucket sort algorithm.

It is particularly useful when the input is uniformly distributed over a range.

Bucket sort can be seen as a generalization of counting sort; while counting sort
creates a bucket for each possible value, bucket sort creates a finite number of
buckets for a range of values.

Bucket Sort

algorithm bucketsort(A:array) → array
let n be the size of A
let B be an array of n empty lists
let M be the max key in A plus 1

for i from 0 to n-1 do
j ← floor(n * (A[i] / M))
B[j].insert(A[i])

end for

for i from 0 to n-1 do
sort the list B[i]

end for

concatenate the sorted lists into a
single array and return it

end algorithm

24Note: Bucket Sort assumes every 𝐴 𝑖 to be in range 0, 1 instead of an integer number.

Bucket Sort Example

0 1 2 3 4

3 9 2921 25

[29, 25, 3, 49, 9, 37, 21, 43]

[3, 9, 21, 25, 29, 37, 43, 49]

25

5 6 7

37 4943

𝑀 = 50 𝐵 𝑛
𝐴 𝑖

𝑀
. insert 𝐴 𝑖

Concatenate sorted lists into an array

Note: Bucket Sort assumes every 𝐴 𝑖 to be in range 0, 1 instead of an integer number.

Bucket Sort
with 𝑘 buckets

algorithm bucketsort(A:array, k:ℤ+) → array
let n be the size of A
let B be an array of k empty lists
let M be the max key in A plus 1

for i from 0 to n-1 do
j ← floor(k * (A[i] / M))
B[j].insert(A[i])

end for

for i from 0 to k-1 do
sort the list B[i]

end for

concatenate the sorted lists into a
single array and return it

end algorithm

26Note: Bucket Sort assumes every 𝐴 𝑖 to be in range 0, 1 instead of an integer number.

Bucket Sort Runtime

Runtime depends on: 𝑛 (input size), 𝑘 (number of buckets), how the elements are
distributed among the buckets, and the method for sorting the buckets.

Worst case? 𝑂 𝑛2 (e.g., all elements in a single bucket sorted with an awful
sorting algorithm)

Best case? 𝑂 𝑛 (e.g., one element per bucket, all sorted in a single bucket)

Average case? 𝑂 𝑛 +
𝑛2

𝑘
+ 𝑘

*One key per bucket? 𝑂 𝑛 + 𝑘

*One key per bucket ≠ One element per bucket 27

Proof of Correctness
(Insights)

Correct Distribution to Buckets: Given an array 𝐴 with 𝑛 elements that are uniformly distributed across the range 0,1 , we distribute
elements into 𝑛 buckets, 𝐵 0…𝑛 − 1 , where each bucket 𝐵[𝑖] corresponds to a specific range of values. By design, if 𝐴 𝑗 is placed
into bucket 𝐵 𝑖 , then any element 𝐴 𝑘 placed into 𝐵 𝑖 + 1 must be greater than 𝐴 𝑗 . This is ensured by the distribution step, where
an element 𝐴 𝑗 is placed into bucket 𝐵 𝑛𝐴 𝑗 , mapping the element's value directly to its position in the sorted array, based on its
proportion within the total range.

Correct Sorting within Buckets: Each bucket 𝐵 𝑖 contains elements from 𝐴 that fall within the range 𝑖/𝑛 to 𝑖 + 1 /𝑛. Since the
elements within each bucket 𝐵 𝑖 are independently sorted, we ensure that the relative order of elements within each bucket is correct
according to the sorting criterion.

Stability within Buckets (if applicable): If the sorting algorithm used for individual buckets is stable, then relative order among equal
elements is preserved within each bucket. This is particularly important when sorting complex objects that have been grouped by a
specific key.

Proper Concatenation Preserves Sorted Order: Upon concatenation, the elements from buckets 𝐵 0 to 𝐵 𝑛 − 1 are combined in
order. Given that each bucket 𝐵 𝑖 was sorted independently, and buckets are concatenated in their index order, the final array is in non-
descending order. This is because elements in bucket 𝐵 𝑖 are always less than or equal to elements in 𝐵 𝑖 + 1 , and within each
bucket, elements are in sorted order.

Proof of Correctness

Invariant 1: After the distribution step, for any two elements 𝐴 𝑗 and 𝐴 𝑘 where
𝑗 < 𝑘, if 𝐴 𝑗 and 𝐴 𝑘 are in the same bucket, then 𝐴 𝑗 will be placed before
𝐴 𝑘 after sorting that bucket. If they are in different buckets, 𝐴 𝑗 will be in a
bucket with a lower index than 𝐴 𝑘 's bucket.

Invariant 2: After sorting all buckets, the elements within each bucket are in
ascending order.

Invariant 3: Concatenating the buckets in order results in a sorted sequence
because the ranges of the buckets ensure that all elements in bucket 𝐵 𝑖 are less
than those in bucket 𝐵 𝑖 + 1 , and within each bucket, elements are sorted.

Radix Sort
03

Sort by digits

30

Radix Sort

Radix Sort is a non-comparative sorting algorithm that sorts integers (and
other data types that can be represented as integers, such as strings) by
processing individual digits.

It operates on the principle of sorting numbers first by their least
significant digits and progressively moving towards the most significant
digit. Radix Sort utilizes a stable sorting algorithm (like Counting Sort) as a
subroutine to sort the elements based on each digit.

Radix Sort

algorithm radixsort(A:array, d:ℤ+)
for i from 0 to d-1 do

use a stable sort to sort A on digit i
end for

end algorithm

32Note: For the number 932, digit 0 is 2, digit 1 is 3, and digit 2 is 9.

Counting Sort
by Digit

algorithm countingsortbydigit(A:array, d:ℤ≥0)
let C be an array of length 10
fill C with 0s
let n be the size A
D ← 10^d

for i from 0 to n-1 do
digit ← floor(A[i] / D) mod 10
C[digit] ← C[digit] + 1

end for

for i from 1 to 9 do
C[i] ← C[i] + C[i-1]

end for

let B be an array of size n

for i from n-1 to 0 by -1 do
digit ← floor(A[i] / D) mod 10
B[C[digit] - 1] ← A[i]
C[digit] ← C[digit] - 1

end for

return B
end algorithm

33Note: For the number 932, digit 0 is 2, digit 1 is 3, and digit 2 is 9.

Example: radixsort([187, 383, 370, 146, 387, 427, 442, 94, 470, 320], 3)

34

Calling countingsortbydigit([187, 383, 370, 146, 387, 427, 442, 94, 470, 320], 0)
returns [370, 470, 320, 442, 383, 94, 146, 187, 387, 427]

Calling countingsortbydigit([370, 470, 320, 442, 383, 94, 146, 187, 387, 427], 1)
returns [320, 427, 442, 146, 370, 470, 383, 187, 387, 94]

Calling countingsortbydigit([320, 427, 442, 146, 370, 470, 383, 187, 387, 94], 2)
returns [94, 146, 187, 320, 370, 383, 387, 427, 442, 470]

[94, 146, 187, 320, 370, 383, 387, 427, 442, 470]
94

100
mod 10 = 0

Example: Sorting 3D tuples

(3, 5, 2) (3, 1, 8) (8, 3, 4) (3, 1, 6)

(3, 5, 2) (3, 1, 8) (8, 3, 4) (3, 1, 6)

(3, 5, 2) (8, 3, 4) (3, 1, 6) (3, 1, 8)

(3, 1, 6) (3, 1, 8) (8, 3, 4) (3, 5, 2)

(3, 1, 6) (3, 1, 8) (3, 5, 2) (8, 3, 4)

35

Original sequence

i = 0

i = 1

i = 2

1 0 1

1 1 1

0 0 1

1 0 1

0s 1s

1 0 1

1 1 1

0 0 1

1 0 1

1 0 1

1 1 1

0 0 1

1 0 1

36

Example: Sorting binary numbers using Bucket Sort (2 buckets, one for 0s and one for 1s) as the stable sort

1 0 1

1 1 1

0 0 1

1 0 1

0s 1s

1 1 1 1 0 1

0 0 1

1 0 1

1 1 1

1 0 1

0 0 1

1 0 1

37

Example: Sorting binary numbers using Bucket Sort (2 buckets, one for 0s and one for 1s) as the stable sort

1 0 1

0 0 1

1 0 1

1 1 1

0s 1s

1 0 1

1 0 1

1 1 1

0 0 1

1 0 1

1 0 1

1 1 1

0 0 1

38

Example: Sorting binary numbers using Bucket Sort (2 buckets, one for 0s and one for 1s) as the stable sort

Radix Sort for Binary Numbers

Input: Sequence of 𝑛 𝑏-bit integers (e.g., 𝑋 = 𝑥𝑏−1…𝑥1𝑥0).

Treat each integer like a tuple with 𝑏 dimensions and sort with radix sort.

The key range (for buckets) is [0, 1]. So, 𝑘 = 2.

Runtime: 𝑂 𝑏 𝑛 + 2 = 𝑂(𝑛) if 𝑏 is constant.

Conclusion: We can sort a sequence of 32-bit integers in linear time.

39

Radix Sort Analysis

Time Complexity: 𝑂 𝑛𝑑 , where 𝑛 is the number of elements in the input array, and 𝑑 is the maximum
number of digits in the largest number. This efficiency holds because the algorithm iterates over each digit
of each number and uses a linear-time sorting algorithm (e.g., Counting Sort) for sorting by digits.

Space Complexity:𝑂(𝑛 + 𝑘), where 𝑘 is the radix or base of the number system used. In the case of
decimal numbers, 𝑘 = 10. The space complexity accounts for the storage needed for the auxiliary array 𝐵
and the count array 𝐶 in Counting Sort. The space complexity changes if used a different stable sort.

Stability: Radix Sort is stable if the sorting algorithm used for sorting digits is stable. This stability is
crucial for ensuring that the relative order of numbers with the same digits in earlier passes is preserved in
later passes.

Applicability: Radix Sort is most effective for sorting integers or strings where the length of the numbers
(in terms of digits) or the strings is relatively uniform. Its performance can significantly surpass
comparison-based sorting algorithms for large datasets with a relatively small key space.

40

Radix Sort Correctness
(Insights)

Stable Sorting of Digits: Radix Sort processes numbers by sorting them based on their digits,
starting from the least significant digit (LSD) and moving towards the most significant digit
(MSD). The correctness of Radix Sort is contingent upon the stability of the digit sorting
algorithm used at each step—meaning that if two elements have the same digit in the current
position being sorted, their relative order is preserved from the input array to the output array
for that digit-sorting phase.

Correct Ordering by Significance of Digits: By sorting numbers based on their digits from
least significant to most significant, Radix Sort ensures that at any stage of the sorting
process, the sorted order of numbers reflects their order considering all previously sorted
digits. This approach builds up the correct overall order incrementally, digit by digit.

41

Radix Sort Correctness

Step 1: Stability Ensures Correct Relative Order

Assume that we use a stable sorting algorithm (e.g., Counting Sort) to sort the elements based
on their current digit.

Given two elements 𝑥 and 𝑦 in the array such that 𝑥 < 𝑦 and they have the same digit in the
position currently being sorted, stability ensures that 𝑥 will still precede 𝑦 after the sorting of
this digit is complete.

This preservation of relative order is crucial when sorting by subsequent digits. If 𝑥 and 𝑦
have the same higher-order digits but differ in a lower-order digit, sorting by the lower-order
digit correctly determines their relative order, and this order will not be disturbed by
subsequent sorts on higher-order digits due to stability.

42

Radix Sort Correctness (cont.)

Step 2: Correct Ordering by Significance of Digits

By starting from the least significant digit and moving towards the most significant digit, each stage of
sorting builds upon the correctly sorted order of the previous stages.

After sorting by the least significant digit, numbers are grouped by that digit, with ties (numbers with the
same least significant digit) still in their original order due to stability.

Sorting by the next digit (and each digit thereafter) rearranges the numbers so that within each group of the
newly sorted digit, the groups formed by the previous digit's sort are preserved and correctly ordered. This
is because the sorting algorithm is stable and because any two numbers with the same digit in the current
position have already been correctly ordered relative to each other based on their lower-order digits.

After the final digit has been sorted, all numbers are correctly ordered because their relative order reflects
the correct precedence of all their digits.

43

Radix Sort Correctness (cont.)

Invariant: After sorting based on digit 𝑖, the array is correctly sorted considering only the 𝑖
least significant digits. This invariant holds for each digit-sorting phase.

Completion: When the final digit-sorting phase is complete (after sorting by the most
significant digit), the array is sorted considering all digits. Since numbers with differing digits
are correctly ordered by the significance of their differing digit, and numbers with identical
digits are correctly ordered by the stability of the sort, the entire array is sorted.

44

Slidesgo

Flaticon Freepik

Stories

CREDITS: This presentation template was created by Slidesgo, including
icons by Flaticon, infographics & images by Freepik and illustrations by

Stories

Done!
Do you have any questions?

45

https://slidesgo.com/
https://www.flaticon.com/
https://www.freepik.com/
https://stories.freepik.com/

	Slide 1: Linear Sorting
	Slide 2: Note: Slides complement the discussion in class
	Slide 3: Table of Contents
	Slide 4: Counting Sort
	Slide 5: Harold H. Seward. "Information Sorting in the Application of Electronic Digital Computers to Business Operations." Master's thesis, MIT, 1954.
	Slide 6: Just count?
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18: Proof of Correctness (Insights)
	Slide 19: Proof of Correctness
	Slide 20: Bucket Sort
	Slide 21: Think About This
	Slide 22: Solution
	Slide 23: Bucket Sort
	Slide 24: Bucket Sort
	Slide 25: Bucket Sort Example
	Slide 26: Bucket Sort with k buckets
	Slide 27: Bucket Sort Runtime
	Slide 28: Proof of Correctness (Insights)
	Slide 29: Proof of Correctness
	Slide 30: Radix Sort
	Slide 31: Radix Sort
	Slide 32: Radix Sort
	Slide 33: Counting Sort by Digit
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39: Radix Sort for Binary Numbers
	Slide 40: Radix Sort Analysis
	Slide 41: Radix Sort Correctness (Insights)
	Slide 42: Radix Sort Correctness
	Slide 43: Radix Sort Correctness (cont.)
	Slide 44: Radix Sort Correctness (cont.)
	Slide 45: Done!

